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Preface

For the reader who is unfamiliar with viscoelasticity, Chapter III presents a general overview
of some basic concepts. It also introduces some of the notation used in the rest of the document.
Most of Chapter IV could also be considered introductory, since the presentation doesn’t depart

from well-established theory until about the end of the chapter.

The symbol list was cumbersome enough that I included it as Appendix A, rather than in the
prefatory pages. The notation there appears roughly in the same order in which it is introduced in

the text. Most symbols are also defined where they are first introduced in the text.

This thesis would not have been possible if I had not received plenty of help and encourage-
ment. My faculty advisor, Dr. Torvik, showed exceptional patience and tolerance. I also received
some timely advise from Dr. Jones in the Materials Laboratory, which profoundly affected the final
content of the thesis. Of course, my wife and family deserve credit for enduring the long hours,

and for shoring up my confidence. My wife has always had more faith in me than I have in myself.

All students in the GAE90D graduating class are sobered by the memory of a classmate who
died last year in an automobile accident. Such a tragedy broadens our perspective on school, and

on life. May we all keep a keen eye on our priorities.

In memory of Wayne P. Wilsdon.

Eugene T. Cottle
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AFIT/GAE/ENY/90D-5

| Abstract

“or many years, viscoelastic materials have been used in damping treatments to control
vibration. In order to optimize a damping treatment for maximum damping, a design engineer
must be able to predict frequencies of vibration of damped normal modes and loss factors as a
function of the design parameters. Theoretical models of layered beams have been developed, but

to date. exact solutions have assumed boundary conditions to be the same for all lavers.

In this thesis, equations of motion for a damped. layered beam are solved for the lonzitudinal
displacement of both clastic layers, as well as the lateral displacement of the composite beam. Test
cases were run on a cemputer to verify the vahidity of the equations, and to comipare results with
previously published approximate methods. Results show that the software compares well with
theory for cases in which simpie theoretical solutions are available. J_;) e

To determine the effect of mixed boundary conditions on design optimization. the svstem
- 2 -

damping factor wag calenlated as a function of adhesive Taver thiek

published approximate methods and the wew formulaten, Permirvting mixed Foundars concditions

was <hown to significantly effect design optimization.




DAMPING OF LAYERED BEAMS WITH MIXED BOUNDARY CONDITIONS

1. Introduction

Engineers frequently face the problem of excessive vibration in structures, especially in the
aerospace industry. One approach to eliminating or reducing excessive vibration is to use materials
which tend to dampen vibration. Materials can be designed into the structure, or they can be
added to an existing structure. The latter approach is more common, since vibration problems
usually only show up after the structure is put into service. Damping materials are commonly
added to a structure in the form of a damping tape. Damping tape is a viscoelastic adhesive on a

foil substrate.

A design engineer is interested in maximizing system damping for a structure. In order to
maximize damping, it is necessary to calculate the damping as a function of the design parameters.
The system damping is a function of the frequency of vibration of steady state harmonic motion.
To calculate system damping, then, it is necessary to solve the equations of motion of the structure
of interest for the damped normal modes and resonant frequencies. Theoretical models of damped

structures have been developed (18), and the literature suggests that optimum configurations ex-

ist (13).

One of the structures which has been investigated extensively is a layered beam. A schematic
of a layered beam is shown in Figure 1. It consists a base layer, generally the structure of interest,
covered by a viscoelastic luyer and an elastic constraining layer. The constraining layer induces
high shear strains in the adhesive layer. The shear strain in the viscoelastic layer is the primary

damping mechanism (7).

Solutions to the equations of motion of the layered beam have considered boundary conditions

only on the colnposite beam (13). In other words, the boundary conditions for all layers are the




restraining layer

viscoelastic layer

base layer

Figure 1. Constrained Layer Damping Treatment

same. However, in practice, it is likely that the layers of the damped structure will not have the
same boundary conditions. The question which needs to be answered, then, is how would the
calculation of an optimum system design be affected by permitting the boundary conditions of a

layered beam to be different for the individual layers.

In this thesis, the equations of motion are solved and system damping are calculated for a
layered beam in which the elastic layers are permitted to have different boundary conditions. The

effect of permitting mixed boundary conditions on the optimum system design is investigated.

A brief historical overview is first presented to show how the present work relates to previously
published theoretical work. Following the historical overview, the reader is introduced to some of the
basic concepts of viscoelastic damping. The equations of motion are then derived using Hamilton’s
principle (9:44). The boundary conditions are shown, and boundary condition matrices are shown

for several important cases.

Nurnerical results are presented which demonstrate the validity of the equations and software,

and which illustrate the effect of considering mixed boundary conditions on the optimum design.




Soine of the factors which were considered in programming the equations are discussed briefly. Test
cases are considerced for which simple solutions existed. It is shown that the complex frequencies
predicted by the software compare well with the results predicted by the simple theory. Complex
frequencies and mode shapes are shown which illustrate the effect of considering mixed boundary
conditions. In addition to mode shapes of lateral vibration of the composite bearn, mode shapes of
longitudinal vibration of the elastic layers are also shown. Finally, sample optimization curves are
shown. Damping is calculated as a function of adhesive layer thickness for several cases. It is shown
that the formulation presented presented here predicts an order of magnitude different optimum
thickness than do previously published approximate methods. It is also shown that considering

mixed boundary conditions significantly affects the optimum design.




II. Historical Perspective

There have been literally hundreds of theoretical treatments of viscoelastic damping mech-
anisms over the past four decades. There have also been comprehensive literature reviews by
recognized experts in the field (18). This perspective will review only what might be considered
milestones in the theoretical development, and consider the general trends in the research, partic-

ularly as it concerns the subject of this thesis.

For a number of years before a theoretical treatment was available, viscoelastic material had
been used as a damping treatment in the form of damping tape (7). The damping tape consisted

of viscoelastic material on a foil substrate.

Governing equations for structures with a cornstrained viscoelastic layer were presented by
Kerwin in 1958, who cited earlier theoretical work by Oberst and Lienard (7). The viscoelastic
characteristics of a material were modelled by permitting the shear modulus to take on complex
values. Kerwin identified shear strain as the primary damping mechanism in a layered beam.
DiTaranto (5) solved the sixth order auxiliary equation for longitudinal displacement of the beam.
Mead and Markus (8) reformulated the equations in terms of the lateral displacement of the beam,
listed possible boundary conditions, and demonstrated orthogonality of damped normal modes. In
this early research, while a broad category of boundary conditions were acknowledged, solutions
were restricted to the simply supported case. More complicated boundary conditions presented
numerical difficulties (13). It is also important to note that boundary conditions were considered

on the composite beam, but not on individual elastic layers.

In 1978, Trompette et al (20) presented a finite element solution for the problem of mixed
boundary conditions. At about the same time, Rao (13) presented theoretical solutions and exact
frequencies and loss factors for all possible boundary conditions on the composite beam. Rao
also presented approximate formulae which satisfactorily approximated the exact solutions for

material loss factor < 0.3.




During the past decade, several important theoretical advan-es were made. Bagley and
Torvik (2) introduced fractional calculus models for transient analysis of viscoelastically damped
structures. Simply stated, fractional calculus permits differentiation and integration of arbitrary
order rather than just of integer order. In other words, a derivative may be represented by d* f/dz?,
where A is not restricted to integer values. Miles and Reinhall (11) included effects of thickness
deformation of the adhesive layer. Finally, Torvik (19) derived the equations of motion and bound-
ary conditions for a multiple layered configuration in which the longitudinal displacements of the
elastic layers are considered separately. That treatment laid the groundwork for an exact solution

in which mixed boundary conditions are permitted.

This thesis uses an apprcach similar to Rao (13) to solve the equations of motion presented by
Torvik (19) for lateral displacement of the composite beam, as well as for longitudinal displacements

of the separate elastic layers. The approach can be generalized to multiple layers as was suggested

by Torvik (19).




III. Preliminary Concepts

A brief explanation of viscoelasticity will be presented, to familiarize the reader with basic
concepts and notation used in the rest of the document. The loss factor is defined, and a distinction

is made between the material loss factor and the beam equivalent loss factor.

The stress-strain relation for a one dimensional, linear, elastic material is generally represented

by (6:89)
o= Fe (1)
where
o = siress
€ = strain
E = Young’s modulus, an experimentally determined propor-

tionality constant
Material wviscoelasticity, in contrast to elasticity, permits the relationship to include dependence

not only on stress and strain, but on stress rates and strain rates (3:14-25). For example, one

simple model of viscoelasticity, called the Kelvin or Voigt model, for an isotropic material, could

be written
de
=F Ey— 2
o et Eay (2)
where
E, and E; = experimentally determined proportionality constants

{ = time
The dependence of stress on the strain rate is called ‘creep’, because, for a constant stress, the
strain continues to change with time. This can be seen by solving Eqn 2 for ¢ as a function of
o and {. In a similar way, strain can be related to stress rate. Stress rate dependence is called

‘relaxation’, because it permits stress to change with time while strain is held constant.




A more general model could be expected to include not only a dependence on the first deriva-
tives of stress or strain with respect to time, but on higher order derivatives as well. The stress-strain

relationship for a general, one dimensional, linear viscoelastic material could be written (3:14)

M N
d™o e
Z am dtm = Z bn?it_"— (3)
m=0 n=0
where
am and b, = emperical proportionality constants
M and N = the number of derivatives and proportionality constants
considered

For a simple elastic material, M = N = 0. In the Kelvin model, M = 0 and N = 1. While Eqn 3
shows dependence on integer derivatives, it is also possible to consider a dependence involving

fractional derivatives (2). In other words, m and n need not be integers.

For steady state oscillatory motion, the stress and strain can be represented by periodic

functions of time (3:21):

o = goe*! and € = ¢pe™! (4)
where
og = average stress
€p = average strain
w = complex frequency

Substituting equations 4 into Eqns 3 results in two complex polynomials in frequency. Factoring
oo and € from the polynomials, and dividing through by the polynomial on the left side of the

equation, yields

5y = Lz bn(iw)"”

= &M ; €o
Zm:o Qm(lw)m

()

-1




which is of the form

complex stress = complex modulus x complex strain

According to this argument, it is possible to represent the stress-strain relationship of a general,
one dimensional, linear viscoelastic material with a single complex modulus, which can be experi-

mentally determined. The modulus will be a function of frequency.

Although Eqn 3 leads to an intuitive feel for meaning of a compiex modulus, it will be shown
that most materials cannot be represented by a linear model with integer derivatives. Fortunately,
the concept of a complex modulus is still valid for more complicated constitutive relations. Refer-

ence (3) gives a more rigorous treatment.

In analyses of viscoelastic damping treatments, the shear modulus of the adhesive layer is
generally taken to be complex (7), of the form G(1 + in,). The term 7, is called the loss factor of
the material. The cubscript v will be used to differentiate between the loss factor of the viscoelastic
material, and the equivalent loss factor of the composite beam. The beam loss factor will be denoted
m, and is explained below. Note that 7, is the ratio of the imaginary and real parts of the complex
modulus. The real and the imaginary parts of the complex modulus are called the storage and loss

moduli, respectively (3:22).

Although typically only the shear modulus of the adhesive layer is considered complex,
the elastic modulus may also be complex. This concept may be used to analyze multi-layered
beams (19). The treatment in the chapters which follow, and the software developed under this

effort, permit a complex elastic modulus.




The loss factors of important damping materials have been experimentally determined and

characterized in a damping design guide published in 1985 (17).

Data in the design guide is

presented in a graphical format called a reduced temperature nomogram (17:1-13,503-511). A

designer can either read damping data from the nomogram, or calculate it using an analytical

representation. The analytical representation is a curve fit of the experimental data. To use the

analytical representation, the designer first calculates a reduced temperature, called a7, then uses

the reduced temperature to calculate the complex frequency, from the following formulae:

where

1 1 2 T
IOgQT = a [—f - -A—(l—)J + 2.303 (—A—{-;—)- - b) ]Og (2-(1—)‘)
b .
+ [m—ﬁ)g—/&(fa)] (T - A(1) (6)
T = ‘temperature
a = (DBCC - CBDC)/DE
b = (CaDc —DaC¢)/Dg
1 177
e = |35~ 7m)
1 1
e =A@ Am
Cc = A(5)— A(4)
1 1 ]?
o = |xt am)
1 1
Ps = 37 Am
Dc = A(6)— A(4)
Dp = DpCa—CpDy
A(1)...A(8) = curve fit parameters specified for material




and

B(2)

= P e BO T + (Be) G (7)
where
G = Complex shear modulus
i = V-1
f = frequency
B(1)...B(6) = curve fit parameters specified for material

The temperature and frequency should be specified in units which are consistent with the parame-
ters A(1)...A(8) and B(1)... B(6). Note that in Eqn 7 the complex modulus is not a simple ratio
of polynomials in frequency, as suggested by Eqn 3. As mentioned earlier, this does not invalidate
the concept of a complex modulus. It only suggests that most materials cannot be adequately rep-
resented by the linear constitutive relation in integer derivatives. The derivation in the following
chapters permits the modulus to be a function of frequency, but does not make any assumptions

regarding the functional form of that dependence.

There are a number of ways to quantify the damping of a system. They include the loss
factor, percent critical damping, viscous damping factor, log decrement, complex frequency, etc.
All these quantities are related (15:2-7). To avoid the inevitable confusion, only two quantities will

be used in this thesis. One will be the complex damped natural frequency of vibration:

w=wgr+wyi (8)

10




where

w = complex frequency of vibration
wr = real part of the complex frequency
wy = imaginary part of the complex frequency

The other will be the loss factor . The distinction between the beam loss factor, n, and the

material loss factor n,, will be made in a moment.

The relationship between the loss factor and the complex frequency can be seen by solving
the equation of motion of a second order system. The equation of motion of free vibration of an

undamped harmonic oscillator is (10:19)

mi+ ku=0 (9)
where
m = mass
u = displacement
k = spring constant or elastic modulus

Damping can be introduced into the equation by letting the spring constant be complex:
mz + k(14 in)z =0 (10)

This is solved in the standard fashion, by assuming z = €“*, noting that w may be complex. After

some simple manipulation, it can be shown that

(1+in):—r£(w?¢—w?+2wnwﬂ) (11)

11




Equating the imaginary parts leads to a relationship between the loss factor and the complex

frequency:
_ f%f% (12)
or
nx %‘J—}: for  w; < wr (13)

For a homogeneous beam, the loss factor is simply the loss factor of the material. However,
for the layered beam, the loss factor defined by Eqn 12, will, in general, be different than the loss
factor of the material in the adhesive layer. For this reason, subscripts will be used to differentiate
between the two. The loss factor of the material will be called 7n,, and the loss factor of the beam,

defined by Eqn 12, will be called n;.

The preliminary concepts which have been shawn here are enough to permit us now to derive

the equations of motion of a layered beam.

12



IV. Derivation of Equations of Motion

The equations of motion will be derived for a three-layer beam using Hamilton's princi-
ple {9:44). To apply Hamilton’s principle, it is necessary to first find expressions for the kinetic and
potential energy. This derivation is similar to work which can be found in the literature (8) (13).

It will be shown how the equations of motion differ from previous work.

Since the goal is to calculate ‘damped normal modes’ (8), the derivation which follows will
consider only the homogeneous case, i.e. externally applied loads will not be included in the

potential energy terms.

Figure 1 shows the directions of the lateral displacements, v, and the longitudinal displace-
ments, u. Lateral displacements are perpendicular to the axis of the beam, and longitudinal dis-
placements are along the axis of the beam. Only the plane strain case will be considered (14:220).

Plane strain implies that displacements ‘out of the page’ are zero.

The kinetic energy of the beam is

L
1 . 2 1 P 1
T= / {é’pe()bteo (UEO + Uzo) + 5Pelbtel (U;1 + ufl) + §pv1btvl
0

. . 2
22, + (-——““’ ; “‘1> ] }dr

(14)
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where

length of the beam

width of the beam

density of base (elastic) layer

thickness of the base layer

lateral displacement of the base layer
longitudinal displacement of the base layer
density of 1st viscoelastic layer

thickness of the 1st viscoelastic layer

lateral displacement of the 1st viscoelastic layer
longitudinal displacement of the 1st viscoelastic layer
density of 1st elastic layer

thickness of the 1st elastic layer

lateral displacement of the 1st elastic layer

longitudinal displacement of the 1st elastic layer

Kinetic energy of rotation is assumed to be negligibly small in Eqn 14. This is reasonable

when displacements are small compared to the length of the beam. Eqn 14 can be simplified by

assuming the and the kinetic energy due to the longitudinal displacements is small compared to

that due to lateral displacements. Also assuming v = v.p = V.1, and assuming unit width, b =1,

reduces the kinetic energy to

where

T= /OL%(M)T (%?)zdz

(pt)T = peoteo + Perter + puirtyl

is the equivalent areal density (mass per unit area) of the beam.

14
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The potential energy is

L 2 2 2 2
1 o°v Ju.o Oue 5
V= L cv G 2
A 2 [DT (82I> + E.oteo ( oz ) + Feta ( 9z ) + vltul7v1] dz

where
E.o = modulus of elasticity of the base (elastic) layer
G,1 = shear modulus of the 1st viscoelastic layer
E.; = modulus of elasticity of the 1st elastic layer
and
Uel — Uep dv
' = — = 4d—
Tu1 ™ + 152
t 1+ teO
di = 142
! t o
Dy = Eeotdy + E. 13

1200 - v3)  12(0- )

It has been assumed (5) (8) that

letvl731 > Ge0t50730+Ge1te1’7';21

o

1 [/Ouer  Bueo\]” Ou.o 2 Aueq 2
cuilel | 3 Eeot. Ye0le
E111[2<8x+81>] < 00(81: + Eeoleo dr

(17)

(21)

(22)

Eqn 21 states that the shear strain energy in the elastic layers is small compared to the shear

strain energy of the adhesive layer. This is reasonable since the damping treatment is inducing

large shear strains in the adhesive layer. Eqn 22 states that the strain energy in the adhesive layer

due to longitudinal displacement is small compared to the longitudinal strain energies of the elastic

layers. This is reasonable since the longitudinal strain of the adhesive layer cannot be greater than

the strains in the elastic layers, and the elastic modulus of the adhesive layer will be small compared

to the elastic layers.




Hamilton's principle (9:44) requires:

/ (6T — V) dt =
ov 8%v (6% du.o du.n
! — Dre—s (=) _ —
/ / [(p )r 3t (6t> DT8z26 <3;r2) EeOte()( Jz >6< oz )
Juey Ju,y
Eeite P 6 . —~ Gy1ty1 716701 | dzdt = 0 (23)

where § 1s the variational operator (14:442-443).

The equations of motion and boundary conditions are obtained by integrating Eqn 23 by
parts. The integration by parts is carried out in such a way that terms involving derivatives of
év, du.o and éu., are eliminated from the integral, and only terms involving év, du.o and Sue
themselves remain under the integral. In doing so, terms are extracted from the integral which
contain conditions which must be satisfied at ¢; and t», and at z = 0 and L. The variations are = 0
at t; and t5. This is equivalent to sayving that initial conditions will be specified. The conditions
which must be satisfied at 2 = 0 and L are the boundary conditions. They will be listed later.
What results from the application of Hamilton’s principle and the integration by parts, then, is
an integral expression which must be satisfied, and a sct of boundary conditions. The integral

expression which must be satisfied is

L 2 o4
v J*v
A {(—pt)rr 5—‘2-6{’—D7‘5;—461'

6 021191
9z dr?

el — Ue é el — 3 Jv [ é el — ¢
—Guits [(ul u 0)( Uey 5£z_g>+dl(rz ( Uey — bu 0)
tll dr tl‘l

e 9% v
~di 5 < “0)517— 16:5]}(11:0 (24)

FEeoleo——2btteo + Eerler ——e bty

16




The integral must be identicaliy 0 for all r. The variations év, éu.o and éu,; are permitted to
vary arbitrarily and inuependently over the domain (14:445) from z = 0 to z = L, so the coefficients

of the variations inside the integral must all vanish. This leads to the equations of motion:

0t 8%v 1 [Bu.,; Sueg 8%
DrZY 4 (pt) L Gortordy | — (et _ M0 L g TV
T ot + (o) at? Gutuds [tvl ( or Oz > + 1312]
82ue0 Uel — Uep dv
ottt G, (BT M0 L g 2N Z g 25
E0t08z3 +G1( i +dig (25)
82ue1 Uel = Ue0 dv _
Eater—5— = Gu (_—t_vl_+d18_r =0

The boundary conditions were extracted from Eqn 23 during the integration by parts, as

conditions which must be satisfied at = 0 or £ = L. They are

Jufor = 0 or Uep = O
Bun /P = 0 or U, = 0
Uel — UeD dv 33
Gudityy | ————+dy—| - Dr— 26
viditey o +U18$ T 573 (26)
= 0 or v = 0
8vf0z® = 0 or dvfdz = 0

The first of Eqns 26 states that, for the base layer, either the longitudinal displacement must
be zero, or the ‘slope’ of the longitudinal displacement must be zero. Requiring the slope to be zero
is equivalent to requiring the end to be force-free. Longitudinal displacement must be unrestrained.
The second equation requires the same to be true for the constraining layer. The third equation
requires either the lateral displacement of all layers to be zero or be free of shear. It must be either
restrained laterally, or free to displace laterally. Note that the expression for the shear force at the
end is somewhat more complicated than comparable expressions for homogeneous beams (9:134).

It could be considered an equivalent shear force for the composite beam. The last equation requires
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either the slope to be zero or the moment to be zero. It must be either prevented from rotating,
or free to rota*~ These equations must be satisfied at both ends of the beam, so they actually

represent a set of eight boundary conditions.

These equations of motion and boundary conditions compare with published results in the
early literature (5) (8) (13), except Eqns 26 consider the longitudinal displacements of the elastic
1ayers separately (19). Note that in Eqns 25, u.o and u,.; appear only as a difference. Considering
boundary conditions on the composite beam is equivalent to considering boundary conditions on

the difference between u.q and u.;. In that case, only six equations result (13).




V. General Solution of the Fquations of Motion

In the literature (8) (13) (19), Eqns 25 are usually combined into a single sixth order equation.
In order to consider mixed boundary conditions, it will be necessary to obtain expressions explicitly
for u.0 and u.;. This is more easily done if the three separate equations are solved simultaneously.
It is possible to obtain the same results by solving the single sixth order equation for v, and
substituting the resulting expression back into Eqns 25 to solve for u.g and u.;, but that procedure

i1s more tedious.

Since the problem of interest is steady state oscillatory motion, displacements will be assumed

to be periodic functions of time. It is customary (7) (5) (8) to assume a solution of the form

v o= e“AePT
Uy = e'“'BeP* (27)
Uy - etutcep.t

Note that this assumes the solution is separable. In other words, it assumes that the displacements
can be written as a function of £ alone times a function of ¢ alone. Assuming a separable solution
implies that mode shapes are expected which are not a function of time, as in the steady state.
The orthogonality of the solutions {8) guarantees the uniqueness of the steady state solution, but

a transient solution of this form may not be unique.
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Substituting Eqns 27 into Eqns 25 and dividing through by e*“! and €?* results in a set of

simultaneous algebraic equations. They can be written in matrix form as follows

[Drp* — (pt)rw? - Goitv1dip?] Gyidyp ~Gyrd1p
Guidip [Ecoteop® = (Gui/tu1)] Gui/tn
—-Gy1dip Gyiftys [Eeltelp2 - (le/tul)]
A 0
x{ B =< 0 (28)
C 0

Finding the solution to Eqns 28 is an eigenvalue problem, although it is not posed in the same
general form as most eigenvalue problems (9:138). Still, it can be solved in the same way. A

nontrivial solution requires the determinant of the three by three matrix = 0:

ted? 1 1 1
0 = 3 G. 1 i + > 6
P vl [ DT + tu1 (Eeltel Ee teO P

W)y 4 (pt)gw?Ge < 1 1 ) 2
- + 29
DT P DTtvl Eeltel Eeoteo P ( )

This is the characteristic equation. It differs from the characteristic equation published in the
literature (5) (13) in that it has a double zero root. The double zero root is the result of considering
longitudinal displacements of the individual elastic layers separately. Note that only even powers
of p appear in the equation. This means that the roots will come in pairs. For p # 0, the roots are
found by first solving for the roots of a cubic equation in p?, then taking the positive and negative

square root of each. The result will be six complex values in positive and negative pairs.

For each value of p which satisfies Eqn 29, Eqns 28 are linearly dependent. For each p # 0,
the solution is determined to within one arbitrary constant. For p := 0, the solution is determined

to within two arbitrary constants.
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The p; are eigenvalues of the system. Mead and Markus (8) demonstrated that, for p; # 0,
the associated eigenfunctions are orthogonal. For p = 0, the eigenfunctions can be made orthogonal
by choosing proper linear combinations of them (9:142). The expansion theorem then guarantees
that any function satisfying the homogeneous boundary conditions can be represented as a linear
combination of the eigenfunctions (9:143). This means that, for solutions of the form of Eqns 27,

the mode shapes will be uniquely determined by a linear combination of the eigenfunctions.

For p # 0, the eigenfunctions are determined by solving for B and C in terms of A in Eqns 28.
Since the equations are now linearly dependent, any two of the equations may be used. Using the

first two of Ens 28 results in the following relation:

(pt)pw? ~ p}Dr
B, ={————————=——| A; = §;A; 30
? ty1d1 Ecoteop} 3= Pk (30)
and

4 . 2 2

p'DT - P'letvldl - (pt)’)"w
C, = |8 + -2 2 Aj =~ A; 31
J j Gurdip; j iAj (31)

If the second and third of Eqns 28 are used, the relations become

-Eelteleltvldlp'
B = |— J A; = B A 32
! [beoteOEelteltvlp? - le (Eeotc() + Eeltel) ’ I ( )
and
E.oteoGuiturdypj
Cj= 2 Aj =i Aj 33
77 | EeoteoEartertu1p? — Gor (Eeoteo + Earter) |7 777 3

Eqns 30 and 31 are equivalent to Eqns 32 and 33 for p; which satisfy Eqn 29. These expressions
relate the lateral displacement of the composite beam to the longitudinal displacements of the

individual elastic layers.
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For p # 0, there are now only six unspecified constants, A;...As. Since there are eight
boundary conditions, two more constants are expected. The two additional constants will result

from the double zero root in the characteristic equation.

For p = 0, the solution is of the form:

v = €' (A7+ Agz)
Uep = e“‘" (B7 + BBI)
Uy = €“'(Cr+ Csr) (34)

Substituting these into Eqns 28 makes the equations linearly dependent. The two independant

equations which remain are

—(pr)w (A7 + Asz) — Gidi1Cg + Gy1d i Bs = 0
le . arn
7‘—‘(C7+Csl‘—B7—BR1‘)+G..1({1AS = 0 (35)
vl

Collecting the coefficients of z° and r' and setting them = 0 yields

—(p1)w* A7 ~ G1d1Cs + G,udiBs = 0
(;l‘l .
: (C7—f37)+GL.1d1A5 = 0
vl
~(pr)w?ds = 0
G
T~ (Ca=Bs) = 0 (36)
vl
Forw # 0
A7 = A3 = 0
B: = C;
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Forw = 0, A7 and Az are unspecified (corresponding to rigid body lateral translation and rotation),

and

BS - Cs

B; - C7 dyt,1As

I

If w = 0 satisfies the boundary conditions, that case must be considered separately. It will not be

treated here.

The general solution to Egns 25 is then

]
Il
ml-
3
-

(Ajep,:r)
L1=1
. .
v = e Z(,BjAjfp’r)-*-BT-!- Bsz
i=1 |
- :
Uy = €' Z('yJAjep’t)-%Br-Fle‘ (37)
ji=1

L -

The solution is now determined to within eight arbitrary constants, A, ...As, B7 and Bs.
This was to be expected, since there are eight boundary conditions which need to be satisfied.
There is also one unspecified parameter, the complex frequency of vibration, w. It now remains
to find the frequency which satisfies a particular set of boundary conditions. Specific boundary

condition matrices are considered next.




VI. Boundary Condition Matrices

Substituting Eqns 37 into an appropriate combination of Eqns 26 results in a set of eight
simultaneous equations in the eight constants A;...Ag, By and Bg, and frequency. In matrix

form, 1t can be represented as

[boundary condition matrix] x {column vector of coefficients} = {zero vector}

Nontrivial solutions will exist orly when the determinant of the boundary condition matrix is
zero. Solving the equations involves finding the complex frequency which drives the determinant to
zero. In contrast to the boundary conditions on the composite beam, where the boundary condition
matrix is six by six (13), for mixed boundary conditions, in general the matrix will be eight by eight.
However, it will be shown that the matrix reduces to a six by six when, at both ends of the beam,
the boundary conditions are the same for each elastic layer. In this chapter, boundary condition
matrices are presented for several important cases. Boundary conditions were selected which would
be most illustrative of the effects of considering the elastic layers separately. A summary of the
boundary conditions considered is shown in Table 1. These boundary conditions are used in the

numerical results presented in Chapter VII.

Both Base and Constraining Layers Fired at 2 =0, Free aiz = L

The case where both the base and constraining layers fixed at z = 0 and free at £ = L is

of interest because it dupticate: solutions whic!. are available in the literature (16:5-24). It will be

Table 1. Summary of Boundary Conditions Considered

Base Layer Restraining Layer
z=0 1] z=1L z=0 r=1
fixed free fixed free
fixed free iree free
pinned | pinned free free
pinned | pinned | rigidly connected free




used for comparison purposes. The boundary conditions are; at z = 0

dv/8x = 0 zero slope
v = 0 zero lateral displacement
(38)
u,o = O zero longitudinal displacement of base layer
u,; = 0 zero longitudinal displacement of constraining layer
and,atz =L
Ou.0/3r = 0 zero longitudinal force on base layer
du.;/8r = 0 zero longitudinal force on constraining layer
d%v/8z® = 0 zero moment on composite beam (39)
Uel — Ueg v 8%
Gudity, | ———+di—| - Dr——
il ™ + 137 T 5.3

= 0 zero shear on composite beam
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Substituting Eqns 37 into Eqns 38 and 39 produces a set of eight simultaneous equations
in the eight constants, A;,..., Ae, B7 and Bg. In this case, the constants B7 and Bz can be
eliminated from the system, reducing the number of simultaneous equations to be satisfied to six.

The equations are, in matrix form

1 1 1 1 1 1
D1 P2 P3 Pa Ps Ps
v, ¥, ¥ ¥, Uy U

Vipefl Wopsefsl  WapgePsl  WypgePel  WgpsePsL Wepgerst

p'i’ePlL p%eP:L pgePsL pge}hL pgel’sl pgePr,L
hyer L hoeral hsersl hgersl hgersl hgepel
. 3 ¢
Ay 0
A- 0
Az 0
x = (40)
Aa 0
Ag 0
A 0
6 J V,
where
¥ =05 -
and
3
Drp;

h; = di(y; — Bj) + dtu1p; — G
vl

Base Layer Fized at £ = 0 and Free at z = L; Constraining Layer Free alz = O andatz =L

This is an example of mixed boundary conditions. Comparing this case to the previous one

will illustrate the effect of considering mixed boundary conditions on the loss factor. The boundary
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conditions are; at z =0

dv/dz = 0 zero slope
v = 0 zero lateral displacement
(41)
u,o = 0 rero longitudinal displacement of base layer
du.1/8z = 0 zero longitudinal force on constraining layer
and,atz =L
8u.o/8z = 0 zero longitudinal force on base layer
Ou. /8 = 0 zero longitudinal force on constraining layer
8%v/8z®> = (0 :ero moment on composite beam (42)
[ dv 83
po I Yo 1 0, 2 _Drea
Guids? toi { ‘oz 5.3

= 0 zero shear on composite beam




Since the boundary conditions on the elastic layers are different at £ = 0, the constants B-

and By cannot be eliminated. The equations are, in matrix form

1 1 1 1 1 1 00
D1 P2 P3 Pa Ps Ds 0 0
B Ba P3 B Bs Bs 10

T1P1 Y2P2 Y3P3 Y4Pa TsPs Y6 Ps 0 1

BipreP L BoprePil  BipiePsl  BupsePsl  BspsePsl  BepsePel 0 1

nip1eP't  yopaefrl  yapaePsl  yupsePrl ygpsePst ye)pgePel 0 1

plert  plersl  plersk plepsl  plepsl  plersl g 0
hiePrl  hoeral  hgersl  hyePel hgersl heePsX 0 0
{ 3\ w
Ay 0
As 0
As 0
Ay 0
X = < (43)

As 0
As 0
B 0
By 0
/ \ J

Although this cannot be reduced to six simultaneous equations, the sparsity of the last two rows
simplifies the calculation of the determinant. It is apparent that, at the most, three six by six

determinants need to be calculated.
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Base Layer Pinned at x = 0 and at z = L; Constraining Layer Free al £ = 0 and Free atz = L

This boundary condition was selected for comparison with known solutions. It is closest to the
simply supported composite boundary condition which was the first case solved in the literature (8).

The boundary conditions are; at both z =0 and z =L

v = 0 zero lateral displacement
8%v/8z? = 0 zero moment on the composite beam
(44)
u.p = 0 zero longitudinal displacement of base layer

du. /8xr = O zero longitudinal force on constraining layer
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The equations are

1 1 1 1 1 1 0 o0
i ps P pi pi pi 0 0
o B2 B3 Ba Ps Bs 10

71P1 Y2P2 Y3P3 Y4Pa Ys5Ps Y6P6 0 1

Prerrt Baeral  paersl  BuePil Boersh  geerel 1 L

ripreP L yapaePrl  y3paePal  yupaePil qgpgePsl  ygpgePsl 01

pierL  plersl  pZersl  plepsl  p2epsl pZersl g g
emr L ePal ePsL ePsL ePsL ePsL 0 0
A 0 |
An 0
As 0
Ay 0
X = (45)

As 0
As 0
Br 0
Bs 0

In this case, by subtracting row five from row three, B; can be eliminated and the number of

simultaneous equations reduced to seven.

Base Layer Pinned at r = 0 and at £ = L; Constraining Layer Rotales with Base Layer at x = 0

ard Freeatz =L

This is a variation on the simply supported case in the previous section. and will be used

to illustrate the effect of permitting mixed boundary conditions. The constrainig layer is ‘rigidly
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connected’ to the base layer at z = 0, such that all layers rotate together at that end. The

constraining layer will have a non-zero enforced displacement.

At first glance this appears to be a non-homogeneous boundary condition. All the boundary
conditions considered so far have been homogeneous, i.e. all zeros appear on the right hand side
of the equations. An arbitrary enforced nonzero displacement is a non-homogeneous boundary
condition. However, the enforced displacement in this case is not arbitrary, but is related to the

slope of the beam. For small rotations, at z = 0
t t 3 I3}
uelz_<£il_+tv1>-—:j:—t ldl—; (46)

Since 8u/dr contains only terms in A; ...As, this displacement can be included in the left-hand
side of the boundary condition equation, and the boundary condition is seen to be homogeneous.

The boundary conditions are; at x = 0

v = 0 zero lateral displacement
8%v/8r® = 0 zero moment on the composite beam
U = 0 zero longitudinal displacement of base layer
uey = —t.1dy(8v/8z) constraining layer rotates with the base layer
(47)
and ¢ = I,
v = 0 zero lateral displacement
8%v/8z%? = 0 zero moment on the composite beam
(48)
u.0 = O zero longitudinal displacement of base layer
du.1/8z = 0 zero longitudinal force on constraining layer
31




The matrix equation is

D
B
I,
Brerk
npreft
pient

eplL

where

Ty
Baerit

y2p2ePL

p%e’)?[d

ePZL

I3
BaersL
vapaePst
pierst

ePaL

P
B4
|
BaereL
YapaePsLl
piert

eplL

I's
Bserst

yspsePst

2 L
pseps

ePaL

[ =7 +t,1dip;

Neither B7 nor Bz can be eliminated in this case.

s
ﬂGepsL
YepsePe:
pgeret

ePGL

—

(=]

o]

(49)

In Chapter VII, numerical results are given for the boundary conditions which have been

shown here.
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VII. Numerical Results

The equations presented in th> previous chapters were programmed and results calculated
for some example cases. The name of the program used in the calculations is ‘BEAM’. The cases
considered were intended to do two things: validate the equations and software, and illustrate the

effects of considering mixed boundary conditions.

The first set of cases verify that the equations are valid and the software is working correctly.
This is done by demonstrating that the solutions degenerate into known solutions in special cases.
The validity of the equations and software are seen in the numerical results, as well as in the mode

shapes predicted by BEAM. It will be shown that the software performs as expected.

The second set of test cases demonstrate the effect of permitting mixed boundary conditions,

and show how the computed results compare with previously published approximate methods.

For input data, all cases use some variation of the physical parameters in an example calcu-
lation in a design guide published in 1985 (16:5-26). This was done to permit comparison with the
results in the design guide. The data is shown in Table 2. The physical properties of the viscoelastic

material come from the third volume of the design guide, reference (17:263-270).

Compuler Programming Approach

Computer software was written to implement the equations shown in the previous sections.
The main program is called BEAM. In this section the programming approach is discussed. The
numerical techniques are explained briefly. A detailed description of input data is included as
Appendix B. Programming notes are in Appendix C. Appendix C also describes the computer and

compiler used, data availability, etc.

As pointed out by Rao (13), solving the equations for boundary conditions other than simply
supported presents some numerical difficulty. The boundary condition matrix tends to be ill-

conditioned (4:175). This can be attributed primarily to the exponential terms. The roots of
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Table 2. Basic Data Used as Starting Point for All Test Cases (16:5-26) (17:263-270)

1. Base Layer, aluminum
2. Adhesive Layer, SoundCoat DIAD no. 606

3. Constraining Layer, aluminum

Variable Value Units
L 0.254 meter
Eeo 6.8900e10 Pascal
teo 5.0800e-3 meter
Peo 2.7700e 3 (kg)/meter®
Veo 0.3300
tu1 2.5400e-4 meter
Pl 9.6900e 2 (kg)/meter®
Eoq 6.8900e10 Pascal
te1 2.5400e-4 meter
Pel 1.0 (kg)/meter®
Ve1 0.3300
A(l) 3350 degrees K
A(2) 2800 degrees K
A(3) 3900 degrees K
A(4) 0.7e-1 degrees K/Hz
A(5) 0.1142 degrees K/Hz
A(6) 0.3e-1 degrees K/Hz
B(1) 0.2e6 Pascal
B(2) 1200.0e6 Pascal
B(3) 0.3e7 Hz
B(4) 0.55
B(5) 1.5
B(6) 0.1
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the characteristic equation come in pairs. Even modest values of p; produce both very large and
very small terms in the matrix. In BEAM, two things are done to ensure accurate calculation
of the determinant. First, double precision arithmetic is used in all calculations. Second, total
pivoting is used in the gaussian elimination algorithm, rather than scaled partial pivoting (4:159).
The determinant is calculated using triangular factorization (4:160). Triangular factorization is
a gaussian elimination algorithm. Rows and/or columns are exchanged during the elimination to
reduce round-off error. In scaled partial pivoting, only rows are interchanged. In total pivoting,
both rows and columns are interchanged as necessary. Total pivoting is slower than scaled partial
pivoting because it involves more overhead. It is also more complicated because the program must
keep track of both row and column interchanges. For these reasons, total pivoting is seldom used.

In this case, total pivoting was necessary to ensure accuracy.

While it would clearly be possible to locate zeros of the determinant using a root finding
algorithm such as Muller’s method (4:120), there are disadvantages to using this approach. Most
root finders (4:72-127) assume prior ku.wledge of approximate locations of zeros, and they may
not converge if they are not in the vicinity of a zero. Also, they cannot be expected to find all
zeros. The magnitude of the boundary condition determinant tends to increase as w increases, so

if good 1nitial estimates are not available a root finder is not likely to converge to a root.

In BEAM, zeros were located using a simple grid search rather than a more complex root find-
ing algorithmm. The grid search is described below. A more efficient routine should be implemented
.n practice, but for the purposes of investigating the locations of the minima, the grid search was
very useful, and it avoided potential convergence problems. The grid search is not fast, but it is

robust and dependable. It is more practical than it is elegant.

In the grid search, the user specifies a range of values for real and imaginary {requency, and
an increment for both real and imaginary values. The software calculates values for the magnitude

of the determinant at every value of real and imaginary frequency specified. This is the grid. The




software then checks all points on the grid for relative minima. If a minimum is found, the grid
is refined in the vicinity of the minimum to improve the accuracy. The surface defined by the
magnitude of the boundary condition determinant is relatively smooth, making it easy to locate

minima. If the initial grid is fine enough, the grid search will find all minima in a given range.

After the minima are found, it then remains to determine which are actually solutions which
satisfy the boundary conditions, i.e. which are ‘zeros’. There are several ways to validate a zero.
First, the value is substituted back into the boundary condition equations. If the error in a boundary
condition equation is roughly the same order of magnitude of the individual terms of the equation,
then that boundary condition is not satisfied (4:169-176). If the error in a boundary condition is
small compared to the individual terms, then the equation is satisfied. Zeros can also be verified
by solving for A4;, p;, B and Bs, B; and v; at that value of frequency, then using these terms
to calculate a mode shape. The mode shapes show clearly whether the boundary condition has
been satisfled. Zeros can also be identified by comparison with previously found zeros. The actual
solutions tend to lie on a smooth curve. Any minima which lie well outside the trend are not likely

to satisfy the boundary conditions.

Test Cases for Validating Software

Three test cases were considered for which comparisons could be made with theoretical results.
The first two cases were for a cantilever beam with the constraining layer fixed at £ = 0. This is the
first boundary condition listed in Table 1. These two cases used input data for the layered beam
for which the frequencies could be expected to approach the frequencies of an undamped cantilever
beam. The third uses the third boundary condition in Table 1, and the input data in Table 2. This

boundary condition should closely resemble the simply supported case in the literature.

Case 1 - Bare Beam The first test case approximated a bare cantilever beam, by letting

the shear modulus of the damping layer be small, and the elastic modulus and density of the
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Table 3. Data Used to Calculate Theoretical Frequencies for Cases 1 and 2
Variable Case 1 Case 2 Units
E  6.8900el0  6.8900el0 Pascal
I 1.0925e-8  1.2990e-8 meter?
L 0.254 0.254 meter
m/L 14.0716 15.0213 (kg)/meter

constraining layer be small. The problem formulation does not permit the numbers to be set to
exactly zero. In some cases, setting a value to zero would result in division by zero. In other
cases it would cause excessive roundoff errors. Trial and error was used to find the smallest values
the software would accept. The real part of the resulting complex frequencies which satisfy the
boundary conditions should approach the natural frequencies of a simple cantilever beam. The

imaginary part of the complex frequencies should approach zero, corresponding to zero damping.

The theoretical natural frequencies are roots to the transcendental equation (10:224-227)

cos AL cosh AL = —1 (50)
where
/\4 _ w m
~ El

Table 3 lists the data used to calculate the theoretical frequencies, and Table 4 lists the input
data for calculating the natural frequencies in BEAM. Data not listed in Table 4 was unchanged
from that shown in Table 2. Note that, in this case, the shear modulus, G,;, was held constant for
all frequencies, rather than letting it vary according to Eqns 6 and 7. Table 5 lists the resulting
natural frequencies for the first six modes as predicted by Eqn 50, and the complex frequencies

predicted by BEAM.

Note in Table 5 that the imaginary frequencies predicted by BEAM are zero or very small,
suggesting small damping. as expected. All real frequencies are 5.9% high. This could be the result

of letting the parameters of the top layers be small, but not zero.




Table 4. Input Data for Program BEAM for Cases 1 and 2

Bare Beam Rigid Spacer
Variable Case 1 Case 2 Units
G,1  1.0000 + 1.0: 3.0000e 9 + 1.0¢  Pascal
pu1  1.0000 1.0000 (kg)/meter>
E.;. 1.0000e 4 + 0.0i 6.8900e10 + 0.0i Pascal
ter  2.5400e-4 2.5400¢-4 meter
Per 1.0 2.7700e 3 (kg)/meter

Table 5. Case 1 - Comparison of Bare Beam Theoretical Frequencies with Values Predicted by

BEAM
Frequencies are in radians/second
BEAM error in
Mode Expected Real Imag Real freq
1 398.59 422.23 0.0000 59 %
2 2497.92 2646.10 0.0000 59 %
3 6994.25 7409.17 0.0000 59 %
4 13705.93 14519.03 0.0000 59 %
5 22656.89 24000.99 0.0001 59 %
6 33854.47 35853.33 0.0001 59%

Case 2 - Rigid Spacer Case 2 approximates an undamped beam with a rigid spacer. In
BEAM, the real part of the shear modulus of the viscoelastic layer was made large, and the imagi-
nary part small. Asin case 1, the theoretical natural frequencies of the beam were found by solving
Eqn 50. A beam with a rigid spacer will have a slightly larger moment of inertia than a bare beam,
due to the separation between the two elastic layers. The mass per unit length will be larger than
the bare beam because of the addition of the mass of the constraining layer. The data used to
calculate the theoretical natural frequencies for this case is shown in Table 3. The input data used
in program BEAM for case 2 is shown in Table 4. As in the first case, the complex shear modulus is
not permitted to vary with frequency according to Eqns 6 and 7, but remains fixed. The theoretical

natural frequencies, and the complex frequencies predicted by BEAM, are listed in Table 6.

Again, the imaginary components of the frequency are zero, as expected. The real components

are all slightly high.
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Table 6. Case 2 - Comparison of Rigid Spacer Theoretical Frequencies with Values Predicted by

BEAM

BEAM error in

Mode Expected Real Imag Real freq

1 420.67 445.42 0.0000 5.9%

2 263631 2791.29 0.0000 5.9%

3 7381.75 7815.16  0.0000 5.9%

4  14465.29 15313.04 0.0000 5.9%

5 23912.16 25310.22 0.0000 5.9%

6 35720.63 37803.00 0.0000 5.9%

It should be noted that the derivation of Eqn 50 assumes that shear strain energy is negli-
gible (10:221). Permitting the layered beam to have a rigid spacer, i.e. very high shear modulus,

could intuitively be expected to result in higher natural frequencies than the bare beam.

Case 8 - Stmply Supported Historically, the first boundary condition solved for the layered

beam was the simply supported case (8). The solution is of the form

. (nwr
v = Dsin (T) (51)
where
D = aconstant
n = the mode number
m = 3.14159 ...
r = distance along the length of the beam
L = the length of the beam

Although the literature does not address the longitudinal displacement of the elastic layers,

intuitively one would expect the displacement of the constraining layer to have the form

ntr

U1 = F cos (T) (52)
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where

F = a constant

This can justified with a simple argument. When the composite beam is deflected upward in the
center, the longitudinal displacement of the top layer should be zero in the center. It should also

be some negative value at z = 0 and the same positive value at z = L.

It is not immediately apparent what form the longitudinal deflection of the base layer would

take, since it is restrained at both ends.

In this section, it will be demonstrated that the BEAM results satisfy Eqns 51 and 52 when

the base layer is simply supported and the top layer is completely unrestrained.

Taking the real part of the expressions for v and u.; in Eqns 25 results in, for a given p,

Re(v) = €P®* [AR cos(prz) — Ay sin{psz)] (53)

and

Re(u1) = eP*7 [(YrRAR — Y1 A1) cos(prz) ~ (YrAs + 71 AR) sin(prz)) (54)

The subscript R denotes the real part and the subscript I denotes the imaginary part of a quantity.
Several conditions must be satisfied for Eqns 53 and 54 to reduce to the form of Eqns 51 and 52.
The p; come in pairs, and they are eigenvelues of the system, so there should be exactly one pair
of p; such that

pr=0 and P = :tﬁ (55)
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If the pair of roots which meet the condition of Eqn 55 are arbitrarily designated p; and ps, it can

be shown that the coefficients A; ... Ag and 7; . ..ve must satisfy the following conditions:

Air+ A2 r

i
o

Aig—Aar # 0

Azp+A44r = 0
(56)
Azr—Aqr = 0
Asr+Aspr = 0
As1—As1 = 0

(11.RALR—M,1411) + (2.RA2 R —T120A21) # O

(v1,RA11 = 11,1A1R) — (Y2.RA21 — 12.142,R) = O
(va.rRA3,R —73.1A31) + (74, RAs,R — Ya1411) = O (57)
(v3,rA31 — 3143 R) — (v4,RA41 —va1dar) = O
(7s,rAs,R — ¥5,145,1) + (16,RA6,R — 16,1 461) = O
(vs,rAs.1 — 5,145 R) — (76,RA461 — V61A6,R) = O

If the conditions in Eqns 56 are satisfied, only a sine term will remain in the expression for v.
Similarly, if the conditions in Eqns 57 are satisfied, only a cosine term will remain in the expression

for u.;.

Note that the subscripts in Eqns 55 ... 57 are arbitrary. The only requirement is that the
nonzero terms in Eqns 56 and 57 must be associated with the two p; which satisfy Eqns 55. Any two,
but only two, p; are expected to satisfy Eqns 55. In the numerical results, simply as a consequence
of the way the software was written, these roots will have ‘adjacent’ indices. In other words, they
could be satisfied by p; and p2, by p3 and p4, or by ps and ps. In Eqns 56 and 57 the nonzero

terms would have the same subscripts as the pair of p; which satisfy Eqns 55.
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Table 7. BEAM Output, Test Case 3, Mode 1

At Omega = 1221.86 +14.461 Radians per second:
P Beta Gamma

J Real 1Imag Real Imag Real Imag
1 21.15 8.49 -.1667E-01 -.B685E-02 0.3334E+00 0.1737E+00
2 -21.15 -8.49 0.1667E-01 0.8685E-02 -.3334E+00 -.1737E+00
3 0.00 -12.38 0.2589E-03 -.1332E-02 -.5178E-02 0.2664E-01
4 0.00 12.38 -.2589E-03 0.1332E-02 0.5178E-02 -.2664E-01
5 12.18 .23 0.2075E-02 -.5778E-03 -.4149E-01 0.1156E-01
6 -12.18 -.23 -.2075E-02 0.5778E-03 0.4149E-01 -.1156E-01

Constants A...

1 Real Imag

1 0.69418126E-05 0.00000000E+00

2 -.82489694E-03 0.12445740E-02

3 0.25344642E+00 0.65964374E+00

4 -.25552087E+00 ~.65962757E+00

5 0.12232727E-03 ~.61542895E-04

6 0.27700760E-02 ~.11991999E-02

7 -.18594580E-02 0.31897464E-03

8 0.14641401E-01 -.25116113E-02

It now remains to demonstrate that the numerical results from BEAM satisfy the conditions
specified. In the test case, the input data listed in Table 2 was used. The shear modulus of the

adhesive layer was permitted to vary according to Eqns 6 and 7.

For the first mode, using the input data in Table 2, the requirement on py is

= ~ 12.37
0.254

pr =

t~

The output of BEAM for the first mode is shown in Table 7. Table 8 shows the values of the
quantities defined by Eqns 56 and 57. In the program output shown in Table 7, the constants B;
and Bg are shown as the seventh and eighth values in the vector A. This was done for convenience
in programming.

In Table 7, p3 and p4 satisfy Eqns 55. Of the terms defined by Eqn 56, the ‘nonzero’ term

is three orders of magnitude larger than the ‘zero’ terms. Of the terms defined by Eqn 57, the
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Table 8. Conditions on Constants 4 and v - Case 3 Mode 1

Ay r+Ayp = —8.1796E —04
Ayg—Az; = —12446E — 03
Aar+ Asp = -2.0744F—-03
Asr—Agqr = +1.3190
Asr+ Asp = +2.8924E-03
As g —Agy = +1.1377F-03
(1,RALR — N 0ALI) + (72, RA2,R — V2,142, 1) = +4.934TE - 04
(71.rA1,1 = 1, 141,R) — (72,RA2,1 — Y2, 1A2R) = +5.5696E — 04
(v3.rA3,R — ¥3,143,1) + (74, RA4,R — Ya1As1) = —3.7T79E - 02
(v3.RA3,r — 13 1A3R) — (Y4,RA4,r — Ya,1A4r) = +5.5178E —05
(vs,rRAs,r — 75,1 As5,1) + (76,RA6, R — ¥6,146,7) = +9.67T19E — 05

It

(vs,rRAs,1 — 715,145,R) — (v6,RA6,1 — Y5,1 46 R) +1.8887E — 05

‘nonzero’ term is two orders of magnitude larger than the ‘zero’ terms. While this difference in

magnitude is technically large enough to meet the requirement, it is not clearly convincing.

The data for the second mode is much better. It is shown in Tables 9 and 10. For the second

mode the requirement on p; is

27 27

PI="T = 0254

= 24.74

In Table 9 it can be seen that ps and pe satisfy the specified conditions. In Table 10, the constants

associated with ps and pg satisfy Eqns 56 and 57.

The difference in the quality of the calculated results between the first and second modes may
be due to the accuracy with which the frequencies were located. Both sets of data were calculated
in the same run, using the same tolerance. The software uses several tolerances to decide how
closely to refine the accuracy of a frequency. The magnitude of the determinant, or the change in
magnitude of the determinant from one iteration to the next, or the difference in frequencies from
one iteration to the next, are all criteria which could terminate the search. These are explained
in more detail in Appendix B. One of these criteria may have been satisfied with a less accurate
calculation of the first frequency than the second. Still, focr both modes, it is safe to say that the

BEAM results degenerate into the theoretical solutions shown in Eqns 51 and 52.
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Table 9. BEAM Output, Test Case 3, Mode 2

At Omega = 4820.67 +75.751 Radians per second:
Beta Gamma

J Real Imag Real Imag Real Imag
1 29.95 12.00 ~.2025E-01 -.1904E-01 0.4048E+00 0.3808E+00
2 -29.95 -12.00 0.2025E-01 0.1904E-01 -.4049E+00 -.380BE+00
3 24.19 1.00 0.3957E-02 -.3047E-02 -.7913E-01 0.6094E-01
4 -24.19 -1.00 -.3957E-02 0.3047E-02 0.7913E-01 -.6094E-01
5 0.00 -24.74 O0.7089E-03 -.2110E-02 -.1418E-01 0.4221E-0Ot
6 0.00 24.74 -.T089E-03 0.2110E-02 0.1418E-01 -.4221E-01

Constants A...

J Real Imag

1 0.80797525E-16 0.00000000E+00

2 -.86216012E-11 0.21418468E-10

3 0.13165025E-14 0.54727301E-15

4 -.11847728E-09 -.18512119E-09

5 0.572314BS5E+00 -.41527191E+00

6 -.57231485E+00 0.41527191E+00

7 0.94137268E-03 0.30044278E-02

8 0.17361570E~-11 0.25122977E-11

Table 10. Conditions on Constants 4 and v - Case 3 Mode 2

AR+ Asp = —86215E 12

Al,l——Agy[ = —2.1418E - 11

Asp+Asyp = -—1.1848E-10

Asg~As; = +1.8512E—10

Asp+Asp = —1.3428E — 10

A5'[ - AG‘] = —0.8305
(v1,RA1.R = Y1.1AL) + (2,RA2 R — Y2142 1) = +1.1646FE — 11
(m.rA1 7~ 7110418 — (Y2, RA2 1 — 72,042 R) = +1.1955F — 11
(v3,rA3.-r —v3.1A31) + (14 rAs R — 14,144 1) = —2.0656E — 11
(v3,rA3.1 — v31A3,R) — (Ya,RAa1 — Y4144 R) = +2.1869E — 11
(vs.rAs R —v5.1As5.1) + (76, RA6.R — Y6.1A61) = +1.8827E — 02
(vs.rRAs. 1 — v5.1As.R) — (v6,RA6,1 — 16,1 A6.R) = +8.0772E — 12
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Figure 2. Normalized Lateral Displacement - Base Layer Pinned-Pinned, Counstraining Layer
Free-Free

The validity of the BEAM results can also be demonstrated by looking at the predicted mode
shapes. The mode shapes ar caleulated by substituting the values of p;o 450 3, +,. Br and
DBy into Eans 37 (without the % verm). Values of displacenment are caleutated and plotted for
representative vall s of o Note that, of the elght constants, one is still unspecificd. This can
be selected arbitranly, aud is usually used to normalize the mede shapes. The mode shapes still
accurately reflect the relative magnitudes of vo w,y and w.q. Fieures 2.3, and 4 show the first
three miode shapes for the data presented in this section. The mode shapes are normalized with

o] o
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Figure 3. Normalized Longitudinal Displacement of Base Layer - Base Layer Pinned-Pinned, Con-
straining Layer Free-Free

Test Cases [llustrating the Effect of Considering Mized Boundary Conditions

In this section. boundary conditions listed in Table 1 are contrasted. to illustrate the effects
of considering mixed boundary conditions. Numerical results are alsc compared to predictions of
PREDY. a program published 1n a damping design guide (16:3-29). PREDY uses approximate

formulae to estimate the complex frequencies of a three layver cantilever beam.

Compartson of Complezr Irequencies for Canlilever Boundary Conditions This case compares
the first and second boundary conditions listed in Table 1. whizh wiil be called the cantilever
Feundary conditions, with results predictea by PREDY (18:5-2010 The complex frequencies and
loss factors predicted by both BEAM and PREDY are shown, as are mode shapes predicted by

BEAM.
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Figure 4.  Normalized Longitudinal Displacement of Constraining Layer - Base Layer Pinned-
Pinned, Constraining Laver Free-Free

Complex frequencies were calculated using the input data in Table 2 exactly as shown. BEAM
calculates real and imazinary frequency components, and PREDY calculates real frequency and
loss factor. ‘The quantities are related. as shown in Eqn 12. Intuitively, one would expect the

«ping to be higher when the constraining layer is fixed, because shear strains are higher.

The complex frequencies predicted by both BEAM and PREDY are shown graphicaily in
Figure 5. Table 11 shows the numerical data used in Figure 5. The complex frequencies for the

two cases predicted by BEAM are quite close, while the PREDY caleulations tend to predict lower

n

innginary frequeners in the izier eedess Al three cadenianions show diiTerent beam Loss T

-1

Teas mteresting that all theee cases shiow the maximnn loss factor at a diferent mode. PRIDY
-

predicts maximum damping in the second mode, while BEAM predicts maximum damping for the

fourth and fifth modes when the constraining layer is fixed-free and free-free, respectively. Except

for the first mode, fixing the constraning layer at r = 0 results in higher damping. as expected.




Table 11.  Values of Complex Frequency Predicted by BEAM and PREDY for Cantilever Bound-
ary Conditions

BEAM
Const. Layer Fixed-Free Const. Layer Free-Free PREDY
Mode Real  Imag s Real Imag 7lb Real  Imag m

437.14 2.78 0.0127 421.02 4.17 0.0198 410.48 417 0.0203
2697.53  36.32 0.0269 | 2678.24  25.19 0.0188 | 2511.78 40.46 0.0322
7495.15 114.71 0.0306 | 747449 96.74 0.0259 | 6946.62 105.29 0.0303

14588.14 234.25 0.0321 | 14570.69 212.39 0.0292 | 13525.28 180.31 0.0267
23990.36 381.06 0.0318 | 23976.29 358.02 0.0299 | 22271.59 260.66 0.0234
35692.67 547.31 0.0307 | 35681.46 524.36 0.0294 | 33184.20 344.23 0.0207

DA W

Table 12. Complex Frequencies Predicted by BEAM for Simply Supported Boundary Conditions
Const. Layer Rigid-Free Const. Layer Free-Free
Mode Real Imag M Real Imag D
1199.22 14.07 0.0235 1221.86 14.46 0.0237
4780.24 66.14 0.0277 | 4820.67 75.75 0.0314
10704.32 161.38 0.0302 | 10753.82 182.75 0.0340
18942.83 288.94 0.0305 | 18996.25 319.32 0.0336
29488.11 440.83 0.0299 | 29542.05 478.50 0.0324
42331.97 608.42 0.0287 | 42385.70 651.11 0.0307

(=2 N L

The loss factors for the first mode are counter-intuitive, but not unreasonable. The damping is a
result primarily of shear strai= in the adhesive layer, and the shear strain is related to the difference
in longitudinal displacement of the elastic layers, u.q — u.;. When both elastic layers are fixed at

r = 0, the shear strain at that end is zero.

The mode shapes predicted by BEAM for the two cantilever boundary conditions for this

example are shown in Figures 6 through 11.

Comparison of Complezx Frequencies for Simply Supportied Boundary Conditions In this sec-
tion, the complex frequencies are shown for the two simply supported boundary conditions, which
are the third and fourth in Table 1. Again, intuitively, one would expect the loss factor to be
higher for the case where the constraining layer is fixed at one end, due to higher shear strains.
The locations of the complex frequencies are shown in Figure 12. The data used in Figure 12 is

listed in Table 12.
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The maximum damping occurs when the constraining layer is free at both ends, in the third
mode. For all mades. damping is hicher when the constraining layer is free at both ends, than
when it s constrained to rotate with the base layer at r = 0. Again, although this runs counter
to the inmtial expectations. it can be explained nsing the same arguments used in the previous
section, Domping is doven by shear strain in the adhesive fayver. which s related to the difference
in longitudinal displacement of the elastic layers, w0 — uey. Requiring the top clastic layer to rotate

with the beee Jayver effecnively fmposes a zero shear strain boundary condition.

Phe v e shinge s 70 the test siply supported ease are shownoan FProures 2 ilironeh 10 T

oede sbnge s Do the s ed sty supperted case are shown i Frgures 13 throush 15

Effect of Parmatting Mured Boundary Condifions on Optunum Design As pointed ot earlier,
)

the eoal of the desien engineer is to maxnuize the loss factor, for optimum system damping. ‘The

et Gf mesed bonndary condinens on optimuom design s of primary coneern. In this section, an
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Figure 10. Normalized Longitudinal Displacement of Base Laver, Base Layver Fixed Free, Con-
straining Layer Free Free

examp!~ of an optimum design calculation is shown. Only one variable is considered, the advesive
layer thickness. The loss factor 1s plotted as a function of adhesive laver thickness for five co<es.
The first three cases constder loss factors for the cantilever boundary conditions, as predicted by
PREDY and BEAM. They are shown in Figures 16 throush 13. The fourth and fifth cases are
results predicted by BEAM for the two sumply supported beundary conditions. They are shown in
Figures 19 and 20. The quantity of interest 1s the thickness at which the loss factor is a maximum.

These values are shown in Tables 13 and 14,

Fer the ennnidever bonn bry conedite oo the Bichier noe vos the enrves show a peak for small

thicknesses. Atter decreasine, she loss Totor then nerensex s zan for large thicknesses. The Jass
fictor would continue 10 increase. but for magnitudes of thickness which are on the same order

of magmtude as the bneth of the beam. At these values. the rotary inertia terms are no longer

negligible, <o the equations of motion are not valid (10:221).
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For the cantilever boundary conditions, all predictions show that there is no optimum for
the first mode, and BEAM predicts no optimum for the first three modes. For the fourth through
the sixth modes. BEAM predicts the optimum at an order of magnitude larger thickness than
does PREDY. For the BEAM predictions. if the constraining laver is fixed at z = 0. the optimum
thickness is sinaller than 1t would be if the constraining laver is fixed. Figure 21 shows curves for
both boundary conditions for the fourth mode, to show the general trend. This shows that fixing
the constraining layer at £ = 0 not only results in a peak at a smaller adlisive laver thickness, but

the penk is also higher,
For the simiply supported cases. again there 1s no clear optimum Sor the Lower modss. In the

modes where there is a peak, for some modes the different boundar -andition has an effect. in

other modes 1t does not.
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Approximate Advesive Layer Thicknesses for Optimum Damping - Cantilever Boundary

Conditions (meters)

BEAM Diif. between
Mode PREDY const. laver tixed free  const. laver frce free | cols 2 and 3
1 no maximui no maximum no maximum
2 0.0002039 no maximum no maximum
3 0.0001096 no maxinum no maximuin
4 0.0000759 0.000380 0.000480 26.3 %
5 0.0000575 0.000255 0.000290 137 %
6 0.0000479 0.000195 0.000220 128 %
Table T Approximate Advesive Laver Thicknesses for Optimum Dampinz - Simpiv Suppoited

Boundary Conditions (meters)

Mode | const. laver free free  const. laver rigid free | Ditf. |
1 - no maximum no -maximurm
2 no maximum no maximum
3 0.00045 0.00010 11 %
4 0.00028 0.00023 0%
5 0.00025 0.00020 20 %
6 0.00015 0.00016 11 %
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Figure 15, Beam Loss Factor vs. Thickness as Predicted by PREDY - All Layers Fixed-Free
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Figure 17. Beam Loss Factor vs. Thickness as Predicted by BEAM - All Layers Fixed-Free
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VIII. Recommendations for Further Research

There are a number of things which should be done to follow up on these results. The formu-
lation should be generalized to more than three layers, and the software modified accordingly. A
similar approach should be applied to more complicated geometries, and results compared with pre-
vious findings (18:107). A parametric study should be done to gain a more thorough understanding

of optimum design configurations.
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IX. Conclusion

The equations of motion of a three layer beam were derived using Hamilton’s principle.
Lateral displacement of the composite beam, and longitudinal displacements of the elastic layers,
were considered separately. The formulation resulted in a set of eight boundary conditions which
had to be satisfied in order to calculate complex frequencies for damped normal modes. The
boundary conditions had nontrivial solutions only when the determinant of the boundary condition

matrix was zero.

The boundary conditions matrices were presented for four important cases, selected to il-
lustrate the effects of permitting mixed boundary conditions on frequency and loss factor for the

damped normal modes.

Numerical results were presented for a number of test cases for each of the four boundary
conditions. First, cases were run for which simple theoretical solutions were available, to determine
whether the formulation as presented would correctly predict the frequencies, damping, and mode
shapes. The results indicated that the software was performing correctly. Second, some cases were
shown to illustrate the effect of permitting the constraining layer to have a different boundary
condition than the base layer. For the cantilever case, for all but the first mode, fixing the top layer
at r = 0 resulted in higher damping than permitting it to be free at & = 0. For the simply supported
cases, fixing the top layer such that it rotates with the base layer at £ = 0 resulted in lower damping
than permitting the top layer to be free at £ = 0. Finally, the effects of considering mixed boundary
conditions on optimum design was illustrated by calculating loss factor as a function of adhesive
layer thickness for all boundary conditions. The thickness at which peak damping occured shifted
dramatically for some modes, and very little or not at all for others. The results as a whole suggest
that the optimum design changes depending on whether the top layer has the same boundary

conditions as the base layer.
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Appendix A. Notation

Variables are shown in roughly the order in which they occur in the text. For all quantities,

the substript R denotes the real part, and the substript / denotes the imaginary part. A dot

denotes differentiation with respect to time.

am and b,

M and N

ag

€0

Ca

stress
strain

Young’s Modulus, experimentally determined proportionality constant in the rela-
tionship of a general, one dimensional, linear elastic material

An experimantally determined proportionality constant the Kelvin or Voigt model
of viscoelasticity (3:19)

An experimantally determined proportionality constant the Kelvin or Voigt model
of viscoelasticity (3:19)

time

emperical proportionality constants in a model of a general, one dimensional, linear
viscoelastic material

the number of derivatives and proportionality constants considered in a particular
model

average stress

average strain

complex frequency

square root of -1

temperature

reduced temperature (17:1-13,503-511)

curve fit parameters in the reduced temperatire equation (17:1-13,503-511), Eqn 6,
for a given viscoelastic material (17)

)
1 1
Ai2) Ally
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_ 1 1
Cp = 73 ~ Am

Ce = A(5) — A(4)

2

Da= [~ i)

Dc = A(6) — A(4)

Dp = DgCa—CpDa
a= (DpCc —~CpDc)/Dg
b= (CaD¢c ~ DaCc)/Dg
G = Complex shear modulus
f = frequency

B(1)...B(6) = curve fit parameters in the shear modulus equation {17:1-13,503-511), Eqn 7, for
a given viscoelastic material (17)

r = independant variable measuring distance along the length of the beam
T = total kinetic energy of the beam
A = total mass in a general second order system

1 = displacement for a general second order system

k = spring constant or elastic modulus in a general second order system

L = length of the beam

b = width of the beam

1 = loss factor
1, = loss factor of a viscoelastic material

ny = equivalent loss factor of the layered beam

peo = density of base (elastic) layer
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teg =

Ue0 =

Pv1 =

v =

thickness of the base layer

lateral displacement of the base layer
longitudinal displacement of the base layer
density of 1st elastic layer

thickness of the 1st viscoelastic layer

lateral displacement of the 1st viscoelastic layer
longitudinal displacement of the 1st viscoelastic layer
density of 1st elastic layer

thickness of the Ist elastic layer

lateral displacement of the 1st elastic layer
longitudinal displacement of the Ist elastic layer

lateral displacement of the composite beam, assuming the lateral displacement of all
layers is the same

equivalent areal density (mass per unit area) of the beam
total potential energy of the beam

modulus of elasticity of the base (elastic) layer

shear modulus of the Ist viscoelastic layer

modulus of elasticity of the 1st elastic layer

1+ (ter + teo)/(2t41)

(Eeot?o)/[12(1 - v2)] + (Eert?))/[1201 = v2)]

shear strain in the first viscoelastic layer

(te1 — teo)/ty) + d1 00 /02

variational operator

index 1dentifying the eight roots of the characteristic equation, Eqn 29, and the con-
stants associated with each root




Aj =

BEAM

PREDY=

m =

a root of the characteristic equation
average displacement v associated with p;
average displacement u.o associated with p,
average displacement u, associated with p;
Bj[A;

Ci/A;

B =

di(v; = B5) + ditoip; — (Drp}) /G

v; + tv1dip;

name of the computer program written as a part of this research effort, to imple-
ment the equations presented in the thesis

name of the program published in the damping design guide in Reference (16:5-29)
[«?m/(ED))"/* for a homogeneous cantilever beam (10:224-227)

moment of inertia of homogeneous cantilever beam

mass per unit length of homogeneous cantilever beam

the mode number

a constant

3.14159 ...

a constant
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Appendix B. Description of User Input for BEAM

To use the software written as part of this research (BEAM), an input data file must be
prepared. Following is a description of the format of the input data file, and an explanation of

input variables.

The first nine characters of each input data line are ignored by the software. This makes it
possible to put the name of the variable on the line, followed by the data, making it easier to keep
track of things. The data is then read in free format fror:. columns 10-80. The location of the data
on the line is not important, but data must be included for every variable. If a number is zero, it
is not sufficient to leave that area blank. A zero must be entered. This is the price which must be
paid for the freedom to locate the data anywhere on the line. For data lines on which more than
one input variable must be placed, the data must be separated by normal field separators, such
as a space or a comma. A description of each of the variables follows. For the physical data, self

consistent units should be used.
OUTPUT Name of the file where output data (except plot data) is to be written. It may contain
a full pathname, 1.e. device:directory/filename

MESSAG Name of the file where messages are to be written. Messages include errors, progress
reports, etc. It may contain a full pathname, i.e. device:directory/filename

PLTFIL Name of the file where plot data is to be written. It may contain a full pathname, i.e.
device:directory/filename

ICASE A number which identifies the case being run. This number is not used by the program,
but it is included in the database output described below.




CDESC

IBC

BCDESC

PROMPT

PLOT

MODOUT

VERBC

SBOUT

ZEROUT

UNIFRM

WATCH

A character string describing the case being run. It is not used by the program, but it
is included in the database output described below.

A number indicating the boundary condition to be considered. Boundary conditions
currently supported are

All layers fixed at £ = 0 and free at z = L.

All layers fixed at both ends.

Base layer fixed at z = 0 and free at z = L. Constraining layer free at both ends.

Base layer pinned at £ = 0 and at £ = L. Constraining layer free at both ends.

g N e

Base layer pinned at £ = 0 and at £ = L. Constraining layer rotates with base
layer at £ = 0, and is free ad z = L.

A character string describing the boundary condition. It is not used by the program,
but it is included in the database output described below.

A logical variable (T or F). If true, the software will ask prompt the user for responses,
such as continuing in the event of an error, or closing files, etc. If false, the software
does not ask for any user input. This is useful for running in batch mode.

A logical variable (T or F). If true, the software will write the mode shapes as a function
of position to the file PLTFIL in a format which may be read by a plotting package.

A logical variable (T or F). If true, the software will write ‘mode’ data, the constants
Ay ...Ag, B7 and Bs to OUTFIL.

A logical variable (T or F). If true, the software will substitute ‘zeros’ found back into
the boundary condition equations, calculate the error, and write the error to OUTFIL.

A logical variable (T or F). If true, the software will write result data in a format which
may be read into a database manager. This output only makes sense for a database
file which is properly defined. The best way to understand the output is to look at it
for a couple of wecks.

A logical variable (T or F). If true, the software will write values of complex frequencies
at the relative minima.

A logical variable (T or F). If true, the grid used to search for zeros will be everywhere
uniformly spaced. If false, the grid size will increase geometrically from the minimum
to the maximum values, resulting in a finer grid nearer the minimum. This should only
be used if only the first quadrant in the complex frequency plane is be.ng searched.

A logical variable (T or F). If true, the software will count iterations and prir.t progress
every IPRINT iterations. This is not a good idea if console output is being redirected
to a file, as in a batch run. It is very helpful if console is being directed to the terminal,
and the run is expected to take a long time.
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VARYG

ITERAT

LOGINC

ITVAR

XIT

IPRINT

OMO

OMMAX

NOMEGA

A logical variable (T or F). If true, the complex shear modulus will be calculated
at each frequency value using the temperature and emperical constants listed below.
If false, the temperature and emperical constants are all ignored except GVB1 and
GVB2. GVBI is taken to be the real part of the complex modulus, and GVB2 is taken
to be the imaginary part. They are held constant for all values of frequency.

A logical variable (T or F). If true, the variable specified by ITVAR will be iterated
according to the values in XIT. Note that the entire grid will be searched and all zeros
found for every value of ITVAR. This could take a while, so it is a good idea to know
how fast the calculations go before attempting to iterate anything.

A logical variable (T or F). If false, the values in XIT are used directly for ITVAR.
If true, and if ITERAT is true, the variable listed in ITVAR will be incremented
‘logarithmically’. In other words, the data points will be equally spaced on a log axis.
The values in XIT will be interpreted accordingly. The first value assigned to ITVAR
will be

1072

and the maximum value assigned to ITVAR will be
10%m

The increment value, z; will be the difference between the base ten logarithm of suc-
cessive XIT values. For example, if the user would like to calculate 20 values, from 10
to 1000, equally spaced on a log axis, the three values in XIT would be 1, .1, 3.

An integer indicating which variableis to be iterated. The number refers to the physical
data listed below. XL is variable 1, EEOR is variable 2, etc. down to XNUE1 which 1s
variable 26.

Three values controlling the iteration of ITVAR. The first number is the minimum
value (z), the second the increment (z;), and the third the maximum (z).

An integer specifying how often progress is to be printed to the console, if WATCH
is true. For example, if IPRINT = 1000, the software will print a progress message
every 1000 iterations. This is an important safety valve. There are times when the
user will want to interrupt program execution. For example, it is easy to inadvertantly
ask the program to search search a grid which would take it several months. There are
also times when it is clear that things are not running correctly. In both MS-DOS and
AmigaDOS, a control-C interrupt only takes effect when the program is performing
terminal 1/O. Specifying a reasonable value for IPRINT will force the program to ‘come
up for air’ periodically, and give the user a chance to interrupt it gracefully.

Two real numbers specifying the starting value for the complex frequency grid. The
first number is the real value, the second the imaginary.

Two real numbers specifying the ending value for the complex frequency grid. The
first number is the real value, the second the imaginary.

Two integers specifying how many points to calculate in the complex frequency grid.
The first number specifies how many real values to calculate, the second how many
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DETZER

OMTOL

NMODES

NX

XL

EEOR

EE0I

TEO

RHOEO

XNUEO

GVAl

GVA2

GVA3

GVA4

GVA5

GVAS6

GVB1

GVB2

GVB3

imaginary values to calculate. In the current implementation, the number of imaginary
points is limited to a maximum of 2500, and an unlimited number of real points may
be calculated. It would be wise to experiment with a few calculations before asking
for a large grid, to get a feel for how fast the computer will work.

A real number controlling the end of a search for a zero. If the magnitude of the
determinant at a zero is less than DETZER, the search terminates.

A real number controlling the end of a search for a zero. If the distance between two
successive frequency values is less than OMTOL, the search terminates.

An integer specifying how many zeros are to be printed in the mode shape plot file,
PLTFIL. This does not limit the number of zeros which will be found, only the number
which will be written to the plot file.

For the mode shape plot file, this is the number of X values for which the displacements
will be calculated and written. They will be uniformly spaced fromz =0toz = L.

The length of the beam.

The real part of the modulus of elasticity of the base layer.
The imaginary part of the modulus of elasticity of the base layer.
The thickness of the base layer.

The density of the base layer.

Poisson’s ratio for the base layer.

Emperical constant A1 used to calculate the shear modulus.
Emperical constant A2 used to calculate the shear modulus.
Emperical constant A3 used to calculate the shear modulus.
Emperical constant A4 used to calculate the shear modulus.
Emperical constant A5 used to calculate the shear modulus.
Emperical constant A6 used to calculate the shear modulus.
Emperical constant Bl used to calculate the shear modulus.
Emperical constant B2 used to calculate the shear modulus.

Emperical constant B3 used to calculate the shear modulus.




GVB4 Emperical constant B4 used to calculate the shear modulus.
GVB5 Emperical constant B5 used to calculate the shear modulus.
GVB6 Emperical constant B6 used to calculate the shear modulus.
TEMPER The temperature, used to calculate the shear modulus.
TV1 Thickness of the adhesive layer.
RHOV1 Density of the adhesive layer.
EE1R The real part of the modulus of elasticity of the constraining layer.
EE1l The imaginary part of the modulus of elasticity of the constraining layer.
TE1 The thickness of the constraining layer.
RHOE1 The density of the constraining layer.

XNUEL1 Poisson’s ratio for the constraining layer.

A sample input data file follows. Note that the actual data begins in column ten.

OUTPUT = data:test.out

MESSAG = =

PLTFIL = data:test.plt
ICASE =3

CDESC = damped-beam
IBC =1

BCDESC = fixed/free
PROMPT = F

PLOT =F

MODOUT = T

VERBC =T

SBOUT = F

ZEROUT = F

UNIFRM = T

WATCH =T

VARYG =T

ITERAT = F

LOGIRC = F

ITVAR = 20

XIT = 0.001 0.00154 0.003

IPRINT = 1000
oMo = 10. -10.




OMMAX
NOMEGA
DETZER
OMTOL
NMODES
NX

XL
EEOR
EEOI
TEO
RHCEO
XNUEO
GVatl
GVA2
GVA3
GVA4
GVAS
GVA6
GVB1
GVB2
GVB3
GVB4
GVBS
GVB6
TEMPER
TV1
RHOV1
EE1R
EE1I
TE1
RHOE1
XNUEZ

2800. 10.

25 5
1.D-20
1.D-14
20
100
.254
6.89E10

0.
.00508
2770.0
.33
335.
280.
390.
.TE-1
.1142
.3E-1
.2E6
1200.E6
1.885E7
.55
1.5
.1
350.
.000254
969.0
6.89E10

0.

.000254
2770.0
.33




Appendix C. Programming Notes for Prograrmn BEAM

The software was written in ANSI standard Fortran 77, and comy.iled and run on a Com-
modore Amiga 2500/020 using ABSOFT Fortran (1). The code should be easily portable to other
computers with only minor modifications. Nonstandard code generally involved such things as
system time calls, and device or filename conventions. Anywhere system dependant code was used,

1t was noted in the source.

Most of the variables are declared in separate files and placed in comiinon blocks. The common
files are then included in each routine which needs access to those variables. This simplifies making
changes to common blocks. Syntax of the INCLUDE statment may vary among compilers. as will
the filename conventions. The imnclude files also have descriptions of the variables. All variables in

COMMON are initialized in a BLOCK DATA subroutine, at the end of the main source file.

To maximize portability, most variables were kept under six characters. Case Is significant in
the variables in the system time routine, which i1s machine specific. Accordingly. the compiler was

require.' to consider case significance. To avoid any problems, all code was written in upper case.

The data was collected and maintained in a database. Al input and all output duta for
each ‘zero’ located in aii test cases was kept. The database manager used - .- Superbase Profes-
sional 3.5 (12). but the data can be made available in any of a number of common formats. All
the data, uncomjressed, occupies approximately 6 megabytes of data. When exported to dBa-
selll for.nat and compressed using LHarc, the data occupies two compressed files of approximately
500 kilohytes each. LHarc is a standard, freely redistributable compression routine widely available

for most personal computers and mainframes.
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